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A B S T R A C T   

The estimation and mapping of actual evapotranspiration (ETa) is an active area of applied research in the fields 
of agriculture and water resources. Thermal remote sensing-based methods, using coarse resolution satellites, 
have been successful at estimating ETa over the conterminous United States (CONUS) and other regions of the 
world. In this study, we present CONUS-wide ETa from Landsat thermal imagery-using the Operational 
Simplified Surface Energy Balance (SSEBop) model in the Google Earth Engine (GEE) cloud computing platform. 
Over 150,000 Landsat satellite images were used to produce 10 years of annual ETa (2010–2019) at unprece-
dented scale. The accuracy assessment of the SSEBop results included point-based evaluation using monthly Eddy 
Covariance (EC) data from 25 AmeriFlux stations as well as basin-scale comparison with annual Water Balance 
ETa (WBET) for more than 1000 sub-basins. Evaluations using EC data showed generally mixed performance 
with weaker (R2 < 0.6) correlation on sparsely vegetated surfaces such as grasslands or woody savanna and 
stronger correlation (R2 > 0.7) over well-vegetated surfaces such as croplands and forests, but location-specific 
conditions rather than cover type were attributed to the variability in accuracy. Croplands performed best with 
R2 of 0.82, root mean square error of 29 mm/month, and average bias of 12%. The WBET evaluation indicated 
that the SSEBop model is strong in explaining the spatial variability (up to R2 > 0.90) of ETa across large basins, 
but it also identified broad hydro-climatic regions where the SSEBop ETa showed directional biases, requiring 
region-specific model parameter improvement and/or bias correction with an overall 7% bias nationwide. 
Annual ETa anomalies over the 10-year period captured widely reported drought-affected regions, for the most 
part, in different parts of the CONUS, indicating their potential applications for mapping regional- and field-scale 
drought and fire effects. Due to the coverage of the Landsat Path/Row system, the availability of cloud-free image 
pixels ranged from less than 12 (mountainous cloud-prone regions and U.S. Northeast) to more than 60 (U.S. 
Southwest) per year. However, this study reinforces a promising application of Landsat satellite data with cloud- 
computing for quick and efficient mapping of ETa for agricultural and water resources assessments at the field 
scale.   

1. Introduction 

The estimation and mapping of evapotranspiration (ET) is an active 

area of applied research in agriculture and water resources. Landscape 
ET represents the combined processes of evaporation and transpiration 
by which water is transferred from the soil-water-vegetation system to 
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the atmosphere thereby completing the hydrologic cycle through the 
movement of water and energy. 

The science and instrumentation of measuring ET at the field scale 
has been well-established over decades of research using devices such as 
lysimeters (Allen et al., 1991), Eddy Covariance (EC) stations (Baldocchi 
et al., 2001), Bowen ratio (Bowen, 1926), and sap flow (Vertessy et al., 
1997) techniques. But the estimation of ET over large areas has only 
been possible with the advent of satellite data. Although ET is a difficult 
process to directly quantify because of its gaseous phase, the fact that it 
occurs continuously over space and time, i.e., throughout the day over a 
landscape, makes ET conducive to observation and measurement using 
polar orbiting satellites that can only take an infrequent instantaneous 
measurement. 

While satellite data brings great opportunities to cover large areas for 
actual evapotranspiration (ETa) estimation, remote sensing ETa also 
faces two main challenges. The first challenge is that complex algo-
rithms must be developed to account for complex spatiotemporal vari-
ations and confounding factors so that landscape ETa could be estimated 
with desired accuracy and consistency over space and time. The second 
challenge is the application of complex ETa models using Landsat-scale 
satellite data is computationally intensive because of the large quantity 
and file sizes of satellite images and associated weather variables. 
Therefore, even satellite-based estimation is generally limited to study 
areas and timeframes that allow ETa modeling with small-scale 
computing infrastructure. Continental and global scale estimation of 
ETa has been restricted to the use of coarse resolution satellite data 
streams such as the Moderate Resolution Imaging Spectroradiometer 
(MODIS) (Guerschman et al., 2009; Mu et al., 2011; Zheng et al., 2016; 
FAO, 2018; Senay et al., 2020), Advanced Very High Resolution Radi-
ometer (Fisher et al., 2008) or those derived from geostationary satel-
lites (Anderson et al., 2007; Alemohammad et al., 2017). 

To obtain Landsat-scale ETa, researchers have used a multi-sensor 
approach where Landsat and coarser datasets are combined to esti-
mate moderate-resolution Landsat-scale ETa. The fusion of Landsat and 
MODIS serves the purpose of improving the temporal coverage of 
Landsat using a high frequency data from MODIS. A successful merging 
of Landsat and MODIS has been shown to improve ETa estimation at a 
regional and field level (Nagler et al., 2012; Singh et al., 2014; Ke et al., 
2017; Sun et al., 2017; Yang et al., 2018; Jiang et al., 2020). 

In addition to combined products, Landsat-based ETa products have 
been developed and evaluated over a range of scales from field to basin- 
wide applications around the world. Irmak et al. (2011) demonstrated 
the application of the Mapping EvapoTranspiration at high Resolution 
with Internalized Calibration (METRIC) model by Allen et al. (2007) for 
predicting field-scale corn water use in Nebraska, USA using Landsat 
data and concluded that the method was viable to scale over large areas 
in humid environments with proper calibrations. 

Choi et al. (2009) compared three energy balance models [METRIC 
(Allen et al., 2007), Two Source (Kustas and Norman, 2000), and 
Trapezoid Interpolation method (Jiang and Islam, 2001)] over corn and 
soybean fields in Iowa, USA using Landsat and reported discrepancies 
among models over large areas, despite good agreements with EC data, 
highlighting the challenges of modeling ETa consistently over large 
areas. Successful applications of Landsat data for other land cover types 
such as grasslands and forests have been documented by several re-
searchers (Sun et al., 2011; Li et al., 2013; Numata et al., 2017; Khand 
et al., 2017; Yang et al., 2020), but these studies are limited to water-
shed- or sub-national scales. 

Landsat-based basin-wide mapping of crop water use, without 
merging with other satellite data, has been conducted for the Colorado 
River Basin (Singh et al., 2014; Senay et al., 2016) by processing up to 
528 images to produce annual ETa using the Operational Simplified 
Surface Energy Balance (SSEBop) model (Senay et al., 2013; Senay, 
2018). Historical application of the SSEBop model has shown the con-
sistency of the model for water use trend analysis in addition to 
providing field-scale ETa over southern California (Senay et al., 2017) 

and Upper Rio Grande Basin (Senay et al., 2019). One of the main 
challenges for historical analysis of Landsat-based ETa was the compu-
tational resources required to process a large number of images to create 
annual ETa. For example, 3396 Landsat images were processed to create 
31 years (1984–2014) of annual ETa for southern California and 10,335 
images were used for generating 32 (1986–2015) years of annual ETa for 
the Upper Rio Grande Basin studies. The first attempt to apply the 
SSEBop model historically in Google Earth Engine (GEE) was a 10-year 
study of the Central Valley of California for analyzing crop water use 
(Schauer and Senay, 2019). These historical studies demonstrated the 
capability and stability of the SSEBop model to capture the spatiotem-
poral dynamics of complex basins, indicating the possibility to conduct 
Landsat-scale ETa for the entire conterminous United States (CONUS) 
and for the world as long as Landsat data and accompanying weather 
variables are available and computational limitations are overcome. 
More recently, the capability of GEE for implementing several ETa 
models is summarized by the OpenET initiative (Melton et al., 2021). 

To illustrate the capabilities of Landsat-based ETa estimates over 
large areas, we present a CONUS-wide study by implementing the 
SSEBop model on the GEE cloud computing platform. The GEE SSEBop 
implementation solves the major computing challenges in creating 
continental scale ETa by eliminating the user’s need for large data 
storage and reducing the time it takes to process and conduct ETa cal-
culations from months to days. The main objectives of this study are as 
follows: (1) create 10 years (2010–2019) of Landsat-scale annual ETa for 
CONUS, (2) describe GEE-enabled model parameter improvements and 
cloud implementations, (3) evaluate SSEBop model performance using 
EC and basin Water Balance ETa (WBET) methods, and (4) demonstrate 
application examples using ETa anomalies for drought monitoring and 
fire impact assessment. 

2. Methodology 

2.1. SSEBop model description 

The SSEBop model estimates landscape ETa directly using a satellite 
psychrometric principle (Senay, 2018). Using a two-step procedure, an 
ET fraction (ETf, defined as the ratio of actual to reference ET) is first 
calculated as a difference between the observed land surface tempera-
ture (dry bulb) and a wet-bulb reference surface temperature as shown 
in Eq. (1). 

ETf = 1 − γs(Ts − Tc) (1)  

where ETf is the daily ET fraction (0.0–1.0) for each pixel; γs is the 
surface psychrometric constant (1/K) over a dry-bare surface and is the 
same as the inverse of the dT (temperature difference, K) parameter in 
Senay et al. (2013); Ts is the dry-bulb surface temperature (K) derived 
from the Landsat thermal band, and Tc is the wet-bulb reference surface 
temperature (K) limit, derived from Ta (daily maximum air tempera-
ture). The constant 1 represents the ET fraction value during maximum 
ETa, i.e., when Ts = Tc. 

Daily ETa is then determined on a per-pixel basis using Eq. (2): 

ETa = ETf *ETr (2)  

where ETa is actual ET (mm), ETr is alfalfa-reference (“potential”) ET 
(mm). 

Here we use the GridMET dataset (Abatzoglou, 2013) for ETr. 
However, GridMET has been reported by Blankenau et al. (2020) to 
overestimate ETr, with biases ranging from 12 to 31% across CONUS. 
Thus, a constant bias correction of 0.85 was applied in this study (Bawa 
et al., 2020). During drought years, anomalously large values of ETr can 
occur, exaggerating the actual ET even when the ET fraction is small. A 
typical example of this occurred during a drought year in 2012. A 
location near Peoria Illinois (− 89.7226E, 40.6510 N) registered a 
GridMET ETr of 22.95 mm/day on June 28th while the 1980–2017 
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climatological median for that day of year was only 6.77 mm/day ac-
cording to the Climate Engine web application tool (https://app. 
climateengine.com; Huntington et al., 2017) with the year total 
exceeding the median year by more than 40%. To generate ETa in this 
analysis, a climatology (daily median of 1980–2017) ETr was used for 
the entire period of study. This helps to reduce anomalously high ETr 
values during drought years (Senay et al., 2013) and enables the surface 
temperature (from Landsat) component to guide the SSEBop model to 
respond to surface agronomic conditions, i.e., year-to-year ETa varia-
tions are dependent on ETf rather than ETo. 

For time integration, SSEBop monthly and annual ETa aggregation 
included linear interpolation of ETf on a daily timestep for days between 
Landsat satellite overpass images. ETf values are then multiplied by 
daily ETr to produce daily total ETa for every pixel followed by sum-
mation to monthly or annual time periods. Detailed information on GEE 
implementation of the processing and data management is presented in 
Section 2.2. 

In this study, the following changes have been implemented 
regarding the two model parameters in Eq. (1): (1) γs was determined 
using a gray-sky radiation instead of clear-sky assumptions, and (2) the 
wet-bulb Tc was estimated using a gridded c factor approach instead of a 
scene wide mean value. 

2.1.1. Gray-sky dT (1/γs) 
The surface psychrometric constant γs was estimated as the inverse of 

dT from a gray-sky radiation source as opposed to clear-sky assumptions 
applied in previous studies. The gray-sky was chosen because the clear- 
sky gives a more unform and unrealistically high net radiation (high dT) 
in much of the world while the gray-sky net radiation is based on ob-
servations that account for localized prevailing atmospheric conditions 
such as haze and water vapor to produce a reasonable dT. Gray-sky dT 
was determined from observed radiation sources provided by the Eu-
ropean Center for Medium -Range Weather Forecasts (ECMWF) Rean-
alysis (ERA) climate dataset at 10-km resolution (https://cds.climate. 
copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land), resulting in an 
improved spatial representation of the net radiation parameter. A 30-m 
Digital Elevation Model (DEM) data allowed the creation of a 1 km 
resolution dT product from 10-km radiation data through the air density 
parameter in Eq. (3). 

γs =
ρ*Cp

Rn*rah
(3)  

where ρ is the density of air (kg.m− 3), calculated as a function of 
elevation (Allen et al., 1998; Senay et al., 2013); Cp is specific heat of air 
at constant pressure, 1.013 × 10− 3 (MJ⋅kg− 1⋅◦C− 1); Rn is the daily 
average net radiation (MJ⋅m− 2⋅d− 1); and rah (s⋅m− 1) is the aerodynamic 
resistance over dry-bare soil (Senay et al., 2013). 

The aerodynamic resistance was determined to be 165 s⋅m− 1 in this 
study, compared to 110 s⋅m− 1 in previous studies, due to a change in the 
source of radiation from clear-sky to gray-sky. The recalibration was 
done using observed dT (not presented), which was determined from 
manually identified hot/bare-dry and cold/vegetated-wet pixels in 
irrigated fields across different parts of the western United States. The Rn 
was estimated using the following equation: 

Rn = 0.5*(Rns − Rnl) (4)  

where Rns is the net shortwave radiation calculated using surface albedo 
(α) = 0.23, i.e., Rns = (1- α)* Rs; Rs is the daily maximum downward 
shortwave radiation from the ERA5-Land dataset. 

The daily average was assumed to be the average of early morning 
(Rns = 0) and daily maximum, thus the use of the 0.5 coefficient. Ten 
years (2001− 2010) of daily ERA5-Land data were used to select the 90th 
percentile, representing the “cloud-free” condition for remote sensing 
ETa without including a potential outlier (9th highest of 10 years). It is 
important to note that the Rn is not a direct model driver, but an input 

parameter to set a maximum boundary condition for the expected ra-
diation input over a dry-bare soil that would give a maximum dT. The 
daily maximum Rnl was found to only constitute a small fraction (<2%) 
of the daily maximum Rns; thus, we chose not to include it in the final Rn 
calculation, i.e., Rnl = 0.0. Because the dT was to be calibrated using the 
rah parameter as described above, the 2% contribution of the Rnl would 
not make a meaningful difference to the final dT as it is a calibrated 
parameter. A 10-day moving average was used to smooth the Rn in order 
to create Rn that would be experienced during a satellite-overpass on a 
typical cloud-free day. Similarly, the use of a constant albedo of 0.23 for 
the bare soil is based on a reasonable approximation, but using a 
different value would be countered by a change in the rah magnitude 
without affecting the final dT through the calibration process (Senay 
et al., 2013). 

2.1.2. Gridded c factor 
The ability to recognize spatiotemporal association of model pa-

rameters (Table 1) through big data processing and new evaluation 
enabled us to implement an improved approach for nationwide Landsat 
ET modeling that handles more complex parameter interactions. 

The c factor allows the conversion of a gridded daily maximum air 
temperature (Ta) into a wet-bulb (Tc) parameter in Eq. (1) (Senay et al., 
2013, 2017). Senay et al. (2017) showed the importance of a temporally 
dynamic c factor by determining a unique c for each day of satellite 
overpass. In this study, a spatially dynamic c factor (gridded c) was 
developed at 5-km resolution to overcome assumption failures over 
complex terrain in the applicability of a single scene-wide c factor. 

To illustrate this, an initial CONUS-wide implementation of the GEE- 
based SSEBop revealed irregular model patterns (artifacts) in parts of the 
western United States such as the Salinas Valley in California (Fig. 1). 
The main finding was that air and land surface temperature relation over 
well-watered surfaces do not necessarily behave uniformly over large 
distances across a Landsat scene. This finding revealed the drawback of 
using a scene-reduced single c factor (Eq. (5)) for modeling the entire 
Landsat scene. With the computing capabilities of GEE to enable these 
data driven insights, we were able to introduce a gridded c factor that 
handled the unique spatial association between Ts_cold and Ta over 
complex topographic regions. 

c =
Ts cold

Ta
(5)  

where Ts_cold (K) is the land surface temperature at the cold/wet- 
vegetated surface; Ta (K) is the daily maximum air temperature over 
the Ts_cold pixel that is defined as areas with high density green vege-
tation with a Normalized Difference Vegetation Index (NDVI) ≥ 0.7 and 
representing the coldest 2.5 percentile (Senay et al., 2017). 

Once the c factor is determined for a given modeling space based on 
Eq. 5, the cold/wet reference boundary condition (Tc) is calculated 
using Eq. (6). 

Tc = c*Ta (6)  

where c is the correction factor that converts Ta over a given pixel to its 
Tc equivalent. 

Cold/wet pixel selection was accomplished by selecting Ts_cold 
(~100 m) values from high NDVI pixels (~30 m) that were focally 

Table 1 
SSEBop model input, parameter list, and data sources.  

Input Parameter Source 

Surface Temperature Ts, Ts_cold Landsat 
Vegetation Index NDVI: filter Ts_cold Landsat 
Maximum Air Temperature Ta, Tc Daymet 
Elevation (DEM) DEM: air density, dT SRTM 
Reference ET ETr GridMET 
Net Radiation (Rn) dT (1/γs) ERA5-Land  
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smoothed (mean 90-m radius). This ensured Ts_cold was minimally 
affected by thermal edge boundaries that occur in areas where high 
NDVI pixels are surrounded by dry surfaces (Fig. 1a). 

An individual c factor value was calculated for every 5-km grid cell 
across each Landsat scene. Where base selection conditions are not met 
(i.e., NDVI <0.7), focal average fill techniques using subsequent larger 
kernels (3 × 3, 5 × 5, etc.) were used to generate complete scene 
coverage with a gradually varying c factor surface for each day of 
overpass at 5-km resolution (Fig. 1b, c). To reduce algorithm 
complexity, adjoining Landsat images within the same path were not 
used to calculate c factor. Roughly 7% of total Landsat scenes used in this 
study (not presented) did not meet c factor criteria, primarily occurring 
in winter months during the non-growing season. Further analysis to 
explore these effects and operational solutions for parameterization at 
sub-annual scales and non-growing seasons would be beneficial. Each 
gridded c factor image was precomputed and kept as an image collection 
model asset with preserved Landsat image ID and source-quality infor-
mation for data provenance and efficient use within the SSEBop ETa 
processing steps. 

The gridded c factor approach shows reasonable distribution of ETf 
compared to the previous single c factor implementation (Fig. 1e versus 
1d) where the irrigated Salinas Valley and adjoining forested areas 
exhibit higher ETf (up to 1.0, Fig. 1e) that was vastly underestimated in 
Fig. 1d (less than 0.5 ETf in most places). Both methods produced similar 
ETf over the northeast areas of the image (Central Valley), indicating the 

scene-wide c factor was dominated by the large number of high NDVI 
pixels in the Central Valley, reasonably modeling this area but not in 
Salinas Valley. This is primarily due to Ta being cooler in relation to Ts in 
the Salinas Valley as compared to over the Central Valley. 

2.2. Cloud computing 

Cloud computing has specifically transformed the ways we are able 
to think about SSEBop ETa modeling in relation to data volume, 
collaborative insights, and spatiotemporal scales. The GEE parallel cloud 
processing platform (Gorelick et al., 2017) enabled us to focus on 
functionality for process improvements and results assessments of SSE-
Bop ETa at a nationwide scale for the first time. Access to extensive 
volumes of remote sensing and related geospatial data in a centralized 
system next to dedicated computing infrastructure dramatically reduces 
satellite ET modeling hurdles such as data acquisition, storage, and 
parsing database files, thereby reducing project time and costs. 
Furthermore, connecting to and sharing code or data assets is not limited 
by things such as access controls, system setup, or network permissions 
but is intuitive and illustrative for faster big data science iteration and 
facilitating extensible collaboration benefits which are more readily 
realized with cloud-hosted data analysis strategies. Using built-in geo-
spatial Application Program Interfaces (APIs), model methods are 
optimized for imagery-cloud mitigation, time integration, and quality 
information, with an overarching goal to generate 30-m resolution scale 

Fig. 1. Maps summarizing the process of computing gridded c for a given Landsat overpass (July 15, 2019) and demonstrating the effect on ETf using an improved 
algorithm. Inset on bottom left shows a location map with the Landsat path/row boundary in yellow outline over the Salinas Valley and Central Valley, California. (a) 
30-m resolution c factor on individual high NDVI pixels as the basis for the (Ts_cold/Ta) calculation; (b) The c factor is upscaled to a 5-km grid cell by using the 2.5th 
percentile value within the 5-km grid cell; (c) Focal averages create a smooth gridded c factor over the entire scene; (d) ETf that results from previous method using a 
single scene-wide c factor; (e) ETf using an improved gridded c factor algorithm. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 
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ETa maps for the entire Landsat archive. The following sections detail 
the procedures for implementing the SSEBop model on the cloud and 
techniques used for model performance evaluation. 

2.2.1. Cloud implementation 
We developed a complete SSEBop ETa modeling framework on the 

GEE platform using the Earth Engine Python API. An overview of the 
cloud implementation schematic is shown in Fig. 2. Development of the 
model in this way enabled the use of automated raster handling func-
tions over all utilized image collections for processing scene-wide ET 
fraction, linear interpolation of daily ETf, creating daily ETa, and ag-
gregation to annual ETa for all of CONUS. Specifically, client library 
operators provided by the Earth Engine API are natively built for 
implementation as a map-reduce style of programming model, where a 
set of developed pixel-based “band math” functions or other geospatial 
methods can be applied to a large time series of spatially filtered or 
joined image collections. Here, we leveraged the parallel processing and 
distribution framework of the GEE system architecture (detailed in 
Gorelick et al., 2017) for connecting key SSEBop model functions and 
algorithms (Section 2.1) together when generating both intermediate 
results and aggregated ET products. 

Model setup and configuration for SSEBop utilized public data cat-
alog inputs such as Landsat and meteorological data as described in 
Section 2.2.2. The unique nature of Earth Engine’s co-located data and 
parallel computing resources facilitated the ability to affordably iterate 
on scientific investigation efforts for new data insights and improve-
ments in model parameters such as with weather datasets or gridded c 
factor, while also building repeatable, operational capabilities. 

Cloud processing enables SSEBop to model 30-m ETa data over large 
areas without traditional desktop hardware limitations. More than 
150,000 Landsat scenes were processed for the years 2010–2019 across 
CONUS, an evolutionary step forward for ETa modeling of moderate- 
resolution Landsat data. 

With the advanced capabilities of Earth Engine, Landsat-based ET 
operations are scalable to continental or global applications. For 
example, GEE computation services use load-balancing distribution 
software for parallel pipeline execution of per-image requests, which 
allows SSEBop to use all available Landsat pixels synchronously in data- 
and memory-intensive functions for interpolation using temporal gap- 
filling procedures as described in Section 2.1. The accessibility of 
centralized datasets and processing for meaningful geospatial analysis is 
supportive to a wide variety of integrative science activities and 

strategies well into the future. 

2.2.2. Data catalogs 
On-demand centralized access to the full Landsat archive as well as 

other climate and weather datasets needed for ETa modeling eliminated 
the need to download and store terabytes of raw data or repeatedly 
manage intermediate outputs. We used Landsat Collection 1 Tier 1 im-
agery from the GEE data catalog (https://developers.google.com/eart 
h-engine/datasets) to obtain Cloud Masks using the CF-Mask derived 
Landsat QA band, NDVI, and Ts (via a retrieval method from Senay et al., 
2016). We filtered our initial image collection to those with less than 
60% cloud cover to remove excessively clouded and cloud-contaminated 
Landsat scenes yet retain adequate image counts for each pixel in our 
calculations. Particularly, scene-path overlap areas provided upwards of 
50+ unique observation dates a year in many locations when using two 
Landsat sensors (Thematic Mapper (TM) & Enhanced Thematic Mapper 
(ETM+) or ETM+ & Thermal Infrared Sensor (TIRS)) for gap-filling and 
time integration procedures. See section 3.1 for more image count 
information. 

Other ancillary datasets for SSEBop modeling included a climato-
logical average (1980–2018) daily maximum air temperature (Ta, 1 km) 
from Daymet (Thornton et al., 2016); a digital elevation model (DEM, 
30-m) dataset from the Shuttle Radar Topography Mission (SRTM) (Farr 
et al., 2007); climatological median (1980–2017) daily alfalfa-based 
Reference ET (ETr, 4-km) from GridMET (Abatzoglou, 2013), and sur-
face psychrometric constant (γs, 1 km) estimated from a gray-sky radi-
ation source ERA5-Land dataset (https://cds.climate.copernicus. 
eu/cdsapp#!/dataset/reanalysis-era5-land, 10-km). These input image 
collections are accessible in the GEE data catalog. 

2.3. Model performance evaluation 

Quantitative model performance was evaluated using EC ETa data at 
point scale and annual Water Balance ETa at Hydrologic Unit Code 
(HUC) level 8. Data from more than 25 EC towers and up to 1104 HUC-8 
s were used. 

2.3.1. Eddy covariance (EC) evaluation 
Following prior studies as in Senay et al. (2019), the accuracy of the 

SSEBop ETa results was evaluated with aggregated monthly ETa from EC 
data derived from the AmeriFlux network (https://ameriflux.lbl.gov/) 
for 2005–2014. Due to biases inherent in processing choices for gap- 

Fig. 2. Overview of SSEBop Landsat model framework in the Google Earth Engine cloud platform. Senay et al. (2016) shows the SSEBop model portion of the flow 
chart in more detail. 
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filling and energy balance closure, we chose to utilize the FLUXNET2015 
data product, which quantifies and standardizes gap-filling and energy 
balance closure with a uniform method to improve the consistency 
across sites for intercomparisons (Pastorello et al., 2020). The FLUX-
NET2015 product comes with the energy balance closure already 
completed, described in detail by Pastorello et al. (2020). In brief, the 
energy balance closure is based on the Bowen ratio and by correcting the 
latent heat (LE) and sensible heat (H) by an energy balance closure 
correction factor (EBC_CF) using a sliding window methodology on the 
original half-hourly flux tower data. FLUXNET2015 data were chosen 
for 25 sites across CONUS from 2005 to 2014 and were filtered to 
exclude days with high energy balance closure error of more than 20%. 
The daily average of the corrected, gap-filled LE turbulent flux in W/m2 

was then converted to daily ETa in mm/day using a conversion factor of 
0.03525 based on the LE of vaporization (Senay, 2008). Monthly ETa 
from each tower location was only aggregated when at least 26 days of 
daily ETa could be calculated. 

The final selection of FLUXNET2015 sites includes a mix of landcover 
types such as cropland, forests, shrublands, and grasslands, but the sites 
are spatially located primarily in the western and midwestern states 
(Fig. 3). The east coast and southern states are poorly represented by EC 
towers. Monthly SSEBop ETa was calculated using the same GEE tech-
niques noted above for areas covering the FLUXNET2015 site locations 
from January 2005 to December 2014. In order to standardize sampling 
and compensate for temporally varying source area footprints around 
each tower location, a spatially averaged ETa was sampled for a 45-m 
circular buffer around each tower location for every month. Coeffi-
cient of determination (R2), bias, and root mean square error (RMSE) 
values were computed to quantify statistical agreement between the 
SSEBop ETa and FLUXNET ETa. 

2.3.2. Water balance evaluation 
Water Balance ETa at HUC8 sub-basins was compared with SSEBop 

ETa at the water-year (October 1 – September 30) timestep. The water- 
year scale minimizes the effect of unaccounted storage changes that are 
important at shorter time scales. The water-year (hereafter named as 
annual) WBET for HUC8s was computed as: 

WBET = P − Q − ΔS (5)  

where, P, Q, and ΔS are annual precipitation, runoff, and storage change 
at HUC8 sub-basins, respectively. 

An independent ETa dataset was generated from the water balance 
approach at the HUC8 scale to compare with ETa estimations from the 
SSEBop model. The CONUS is divided into hydrological unit systems 
identified by a unique HUC consisting of two to eight digits for repre-
senting the geographic areas (Seaber et al., 1987). The largest 
geographic area is a region identified by a unique HUC2 number, fol-
lowed by sub-region (HUC4), basin (HUC6), and sub-basin (HUC8). The 
HUC8s within the CONUS were considered in this study with a total 
number of 2121 HUC8s (Fig. 3). The sizes of these HUC8 sub-basins are 
between 184 km2 and 84,706 km2 with an average of 4027 km2. 

For the Water Balance ETa (WBET) estimation at the HUC8 scale, 
precipitation and runoff data were used. In this study, we used the 
monthly precipitation data at 4-km spatial resolution, obtained from the 
Parameter-elevation Regressions on Independent Slopes Model (PRISM) 
(Daly et al., 1994), which are publicly available at the Oregon State 
University PRISM Climate Group website http://www.prism.oregons 
tate.edu/. 

The runoff data for HUC8s were obtained from the U.S. Geological 
Survey (USGS) WaterWatch website (https://waterwatch.usgs.gov/). 
We used the annual runoff data that are available as a single value (non- 
spatial) for HUC8s. These runoff data are generated from historical flow 
observations at the USGS stream gages, drainage basin boundaries of the 
stream gages, and the HUC8 boundaries (Brakebill et al., 2011). Previ-
ous studies (Senay et al., 2011; Velpuri et al., 2013; Senay et al., 2016) 
have applied the PRISM precipitation and the USGS WaterWatch runoff 
data for computing ET from the water balance approach to compare 
with the ETa estimated from the SSEBop model. 

Monthly P and Q were aggregated to annual totals to obtain a single 
basin-average value for each HUC8. The annual storage change (ΔS) was 
assumed to be negligible (0.0) during the study period. 

Following similar assumptions and techniques reported in the liter-
ature, several filters were applied to exclude HUC8s where the water 
balance is not expected to close (WBET ∕= P – Q) due to several factors: 
For example, for the mean year, HUCs along the boundary of the CONUS 
(176 HUC8s) were excluded due to incomplete precipitation data, HUCs 
with runoff (Q) to precipitation ratio (Q/P) > 0.40 (364 HUC8s) were 
excluded to reduce effects of regional groundwater flow (e.g. Velpuri 
et al., 2013; Senay et al., 2016), and HUC8s with WBET greater than 
potential ET (8 HUC8s). Additionally, HUCs with SSEBop ETa greater 
than precipitation (540 HUC8s) were excluded for unrealistic ETa and 
heavily irrigated HUCs that the WBET does not take into account. After 
these filters (2121-176 - 364 - 8 - 540) and adding 30 HUCs for double 

Fig. 3. Location of eddy covariance (EC) towers used in this study, selected eight-digit Hydrological Unit Code (HUC8) boundaries (red) and the six regions of the 
conterminous United States. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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accounting from multiple criteria, 1063 HUC8s (50% of 2121 HUC8s 
across the CONUS) were selected for the evaluation. 

The annual total ETa from SSEBop was compared with WBET for 
average and individual years during the 10-year (2009–2018 water- 
year) period. The water-year period for 2009/2018 refers to the 
October 1, 2008/2017 through September 30, 2009/2018 time periods. 

The ETa comparisons were grouped across six different hydro- 

climatic regions of the CONUS (Fig. 3) to evaluate the performance of 
SSEBop across the regions. R2, bias, and RMSE were applied for statis-
tical analysis. 

Fig. 4. SSEBop median annual (January–December) ETa (mm) from 2010 to 2019 across the conterminous United States at 30-m resolution (a). CONUS-wide spatial 
averages of median annual ETa by NLCD landcover (b). Gridded data are available at https://doi.org/10.5066/P9SJLMAQ (Senay et al., 2021b). 
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3. Results and discussion 

3.1. Model outputs and cloud-free image analysis 

One of the main objectives of this study was to demonstrate the 
successful implementation of the SSEBop model with GEE. Gridded 

outputs included Landsat-resolution 10-year annual ETa (2010–2019) 
(Senay et al., 2021a, 2021b) and cloud-free pixel count quality infor-
mation. It should be noted that the integration of cloud-free image masks 
was determined from the Landsat QA band for the “clear, high-confi-
dence” classification, which included masking of clouds, shadow, snow, 
and ice. Therefore “cloud-free pixel count” refers to usable image 

Fig. 5. Ten-year (2010–2019, January–December) mean annual clear-image pixel count for CONUS (a) and coefficient of variation (CV) per-pixel (b). Cloud-affected 
regions show with lower counts and regions with a high year-to-year variability show with a high CV. Data were resampled to 250-m resolution for display. 
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observations based on those designations on a per-pixel basis. Earlier 
studies suggest a minimum of 12 cloud-free images for a given pixel, 
distributed uniformly each year, are necessary for a reasonable estima-
tion of annual ETa (e.g., Singh et al., 2014). 

The generation of annual median ETa required more than 150,000 
Landsat images (~15,000 per year) in addition to gridded weather data 
layers. The median annual ETa distribution (Fig. 4) shows the obvious 
high and low ETa magnitudes over well-vegetated and barren surfaces, 
respectively (Senay et al., 2021a). Using the National Land Cover 
Database (NLCD) by Homer et al. (2015), nationwide landcover-type 
spatial averages for open water and woody wetlands were estimated 
to experience ETa > 1000 mm/year with croplands showing a range of 
700–800 mm/year and barren lands having <400 mm/year (Fig. 4b). 

The high ETa values in the western United States are mainly 
concentrated over irrigated areas such as the Central Valley in Califor-
nia, Snake River Basin in Idaho, and Columbia Plateau in Washington. 
Despite the general depiction of high and low ETa areas according to the 
expected land cover and hydro-climatic regions, unexpected artifacts of 
ETa are observed in different parts of CONUS such as central Texas and 
northeastern New York. Some of these artifacts can be attributed to 
availability of cloud-free images. Especially, the low ETa region in 
northeast New York coincides with the low image count and high co-
efficient of variability shown in Fig. 5a and b, respectively. 

The ability to produce consistent and accurate estimates of monthly 
and annual ETa products depends in part on meeting an adequate clear 
pixel count and an interannual consistency in pixel count. Fig. 5 shows a 
general decreasing clear-image pixel count (annual mean) from south-
west to northeast CONUS, ranging from >60 (Arizona) to <12 (Maine). 
Fewer clear-image pixel counts are also observed in the northwest and 
over the Rocky Mountain Range. The relatively large range of coefficient 
of variation in CONUS indicates the importance of conducting a careful 
quality assessment to make sure minimum image counts are met. It 
should be noted that the contrasting high-low image count patterns, a 
result of more frequent images on overlapping path/rows, did not seem 
to influence the annual ET patterns in Fig. 4, indicating a reasonable 
number of clear images were available each year to create the annual 
estimate across CONUS. But it is important to note that these differences 
in image count on overlapping path/rows could bring a marked differ-
ence in the monthly estimates, especially in cloud affected regions. 

Table 2 shows the top and bottom-ranked states based on number of 
clear-image pixel counts by calendar year. The top-ranked states with 
the greatest number of clear images (Arizona, California, New Mexico, 
Nevada, Utah) benefit from over twice as many (~38 versus ~14) me-
dian images per year relative to the bottom five states (Vermont, Maine, 
New York, Michigan, Pennsylvania). A median number of 14 images per 

year might be too close to the ideal minimum (12), especially when 
considering a non-uniform distribution of images to obtain a reliable 
estimate for each month. The bottom-ranked states also occur mostly in 
the Northeast region of the United States. This region lacks represen-
tative EC tower data and has the lowest number of samples of WBET (see 
sections 3.2 and 3.3). In terms of uncertainty regarding annual total ET 
estimation, the Northeast United States is a particularly challenging 
region. Of note, the mapping analysis of both ETa and clouds presented 
here at CONUS scale is showing annual summaries over the 10-year 
period of study. Therefore, future research and investigation into sub- 
annual timeframes would be helpful to aid in understanding these 
regional effects in more detail. 

In addition to image quality and availability, the sources of ETa error 
could range from other model inputs to model parameters as discussed 
in Section 3.5. Although it is difficult to thoroughly evaluate the accu-
racy of the product in all extents of the study area, the point-based EC 
and WBET shown below can provide some information on the behavior 
of the model performance at different scales and regions. 

3.2. Performance against EC towers 

Validation results of monthly SSEBop ETa based on the data from 25 
EC sites for all available years are presented in Table 3 and Fig. 6. 
Although the FLUXNET2015 dataset has already undergone through an 
energy balance closure correction, there remains an average closure 
error of around 4% (ranges 3–6%). However, this error does not corre-
late with the percent bias of the SSEBop ETa against ETa from EC towers. 
The R2 varied substantially by EC tower site (R2 ranged from 0.35 to 
0.95) with an average of 0.68 over all cover types. The average RMSE for 
all sites was 32 mm/month. SSEBop overestimated the FLUXNET ET by 
an average percent bias of 30% for all EC sites. Most sites (20 out of 25) 
had positive bias values that ranged from 2% to 98%, indicating a 
general overestimation of SSEBop ETa compared to observed ETa from 
the EC towers. At five EC towers, SSEBop underestimated ETa by an 
average of 27%. 

Validation results by land cover showed that the performance of 
SSEBop ETa appears to vary with land cover types (Table 3). SSEBop 
performed best on cropland sites. The average of the six cropland sites 
shows a strong R2 value of 0.82 and a relatively lower bias (12%) and an 
average RMSE of 29 mm/month indicating that SSEBop model per-
formed more accurately in agricultural areas (Table 3). The pooled data 
analysis for croplands shows similar results with an R2 of 0.80, bias of 
9%, and RMSE of 30 mm/month (Fig. 6). While the pooled dataset 
(Fig. 6) for the seven forested and the seven grassland sites show that 
SSEBop overestimated the EC data by 28% and 45%, respectively, site 
averages from Table 3 show an average bias of 39% and 45%, respec-
tively, indicating a larger bias difference between pooled (Fig. 6) and 
site averages (Table 3) for the forest sites. Forested sites (average of 7 
sites, Table 3) show an average determination R2 of 0.70 and average 
RMSE of 34 mm/month while grassland sites show an average R2 of 0.61 
and average RMSE of 36 mm, indicating SSEBop is still moderately 
correlated with both forest and grassland landcover sites but with higher 
bias in magnitude and higher error. The site averages (Table 3) tend to 
show improved R2 compared to pooled (Fig. 6) data because of the effect 
of averaging in reducing random errors. Although there are only two 
shrubland sites, SSEBop performed reasonably with an average R2 of 
0.59 and average RMSE of 21 mm with a − 12% bias (Table 3). SSEBop 
showed mixed performance on the two woody savanna sites with an 
average R2 of 0.57, RMSE of 30 mm, and a 20% bias. In comparison, the 
one wetland site (US-Los in Wisconsin) also shows a substantial over-
estimation of 73% for SSEBop over the EC tower, but higher R2 of 0.77 
and lower error with an RMSE of 29 mm, indicating that SSEBop 
captured the seasonal variability of the tower but overestimated the 
magnitude for the wetland site. The large overestimation over this 
wetland site warrants further investigation of the EC tower site in case 
there is a strong spatial mismatch using EC tower footprint analysis 

Table 2 
Cloud-free image pixel count summary statistics for the top and bottom states 
ranked by median count. Ten year (2010–2019, January–December) clear- 
image pixel count (median, mean, minimum (min), and maximum (max)) 
were averaged for each state. Range, Standard Deviation (STD) and Coefficient 
of Variation (CV) were calculated from the state-wide summaries.  

Top Five States 

State Name Median Mean Min Max Range STD CV(%) 

Arizona 38.0 36.4 18.2 44.6 26.4 7.2 19.8 
California 36.3 34.7 17.1 42.7 25.6 7.0 20.3 
New Mexico 35.3 34.0 18.3 42.6 24.3 6.8 19.9 
Nevada 31.6 30.6 15.8 38.3 22.5 6.1 19.9 
Utah 29.2 28.4 15.5 36.5 21.0 5.9 21.0  

Bottom Five States 
Pennsylvania 16.2 16.0 8.5 22.8 14.3 4.3 27.0 
Michigan 15.4 15.4 8.6 22.1 13.5 3.9 25.9 
New York 15.1 15.3 8.0 24.2 16.2 4.6 30.5 
Maine 15.0 14.8 8.0 20.8 12.8 3.8 26.5 
Vermont 14.2 14.5 8.7 22.0 13.4 3.8 26.0  
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considering the 45 mm/month (540 mm/year) ET for a wetland site is 
on the low side. 

Fig. 7 also demonstrates similarity in NDVI and ETa seasonal patterns 
and their inter-annual variability. It can be observed that SSEBop tends 
to be a smoother curve compared to the EC data. For example, SSEBop 
missed the sudden dip during the summer of 2009 for US-MMS 
(broadleaf forest), which may be tied to using a climatology ETr. It 
was reassuring that both SSEBop and EC data captured the narrow 
growing season at US-Ne3, which is also corroborated by the NDVI 
distribution. SSEBop completely missed the peak in 2012 for the 
shrubland site in Arizona (US-Whs), which may be attributed to having 

only a single Landsat 7 satellite in operation. Overall, the results are 
comparable to earlier reports (e.g., Senay et al., 2013, 2019; Singh et al., 
2014, and Velpuri et al., 2013). 

Ultimately, the point-based comparison against EC tower data in-
dicates that model accuracy varies from location to location, but on 
average the model performance is more accurate over croplands 
compared to forest and grasslands. However, the fact that we observed 
strong and weak performance within each land cover type indicates the 
performance of the model may be more tied to the location than cover 
type. More exploration would be beneficial to understand the spatial 
variability of model performance by investigating inputs and model 

Table 3 
Statistical comparison between FLUXNET2015 observations from 25 Ameriflux EC flux towers and monthly total ETa estimates from SSEBop during 2005–2014. The 
table includes the average monthly EC ETa, average monthly SSEBop Landsat ETa for the tower, U.S. state abbreviation, NLCD landcover type Homer et al. (2015), 
average difference (bias) in monthly ETa, R2, RMSE, and the percent bias of SSEBop compared to average FLUXNET monthly ETa. Average energy balance closure error 
is also included (%). Accuracy metrics are also summarized by cover type as site averages.  

Site State* Land cover EC (mm) SSEBop (mm) Bias (mm) Energy Balance Closure Error (%) R2 RMSE (mm) Bias (%) 

US-ARM OK Cropland 48 72 24 5 0.65 37 50 
US-Ne1 NE Cropland 74 68 − 9 4 0.79 31 − 8 
US-Ne2 NE Cropland 67 69 − 4 4 0.83 27 3 
US-Ne3 NE Cropland 57 61 − 1 4 0.83 23 7 
US-Tw3 CA Cropland 91 94 3 3 0.87 26 3 
US-Twt CA Cropland 115 136 21 4 0.94 31 18 
Average of All Cropland Sites 0.82 29 12 
US-Blo CA Forest 59 92 33 5 0.77 39 56 
US-GLE WY Forest 56 67 2 6 0.52 34 20 
US-Me2 OR Forest 53 76 23 5 0.58 36 43 
US-MMS IN Forest 55 77 22 5 0.85 31 40 
US-NR1 CO Forest 61 53 − 18 5 0.70 29 − 13 
US-Syv MI Forest 50 66 15 6 0.85 26 32 
US-WCr WI Forest 46 91 31 6 0.64 41 98 
Average of All Forest Sites 0.70 34 39 
US-AR1 OK Grassland 39 69 30 5 0.35 46 77 
US-Arb OK Grassland 65 104 39 3 0.89 45 60 
US-Arc OK Grassland 67 103 36 2 0.95 39 54 
US-SRG AZ Grassland 38 16 − 24 3 0.65 33 − 58 
US-Var CA Grassland 30 48 18 4 0.54 32 60 
US-Wkg AZ Grassland 24 35 11 4 0.50 23 46 
US-AR2 OK Grassland 32 56 24 5 0.36 37 75 
Average of All Grassland Sites 0.61 36 45 
US-SRM AZ Savanna 30 20 − 11 3 0.53 23 − 33 
US-Ton CA Savanna 39 67 29 4 0.60 37 72 
Average of All Savanna Sites 0.57 30 20 
US-KS2 FL Shrubland 96 98 1 4 0.60 24 2 
US-Whs AZ Shrubland 24 18 − 7 3 0.57 18 − 25 
Average of All Shrubland Sites 0.59 21 − 12 
US-Los WI Wetland 45 78 20 6 0.77 29 73  

* AZ: California; CA: California; FL: Florida; IN: Indiana: MI: Michigan; NE: Nebraska; OK: Oklahoma; OR: Oregon; WI: Wisconsin; WY: Wyoming. 

Fig. 6. Scatterplots of monthly ETa values for grassland (n = 7), cropland (n = 6), and forest (n = 7) sites from FLUXNET eddy covariance towers compared against 
the Landsat SSEBop ETa for the tower locations. The gray line is the 1:1 and the solid dark line is the best fit with “n” representing the number of months in each 
landcover group during 2005–2014. 
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parameters and conducting sensitivity analysis. 

3.3. Performance against water balance ETa 

The mean annual HUC8 ETa comparison for the 10-year (2009–2018 
water-year) is shown in Fig. 8. The results indicate a good agreement 
between the SSEBop ET and WBET with an R2 value of 0.92. The bias on 

annual ETa was 50 mm/yr and RMSE was 123 mm/yr. In comparison to 
WBET, SSEBop underestimated ETa at the lower ETa rates (regions with 
<400 mm/yr) and overestimated ETa at higher (>800 mm/yr) ETa rates 
(Fig. 8). On average, SSEBop overestimated annual ETa by 7% compared 
to WBET. 

The summary of the HUC8 ETa comparison for each water year from 
2009 to 2018 is shown in Table 4. The annual mean ETa from SSEBop 
ranged from 618 mm/yr to 795 mm/yr, and WBET from 625 mm/yr to 
764 mm/yr. The R2 values were above 0.81 for all water years. Bias was 
within 58 mm/yr and RMSE values were within 161 mm/yr. For most 
water years (except 2010 and 2011), SSEBop ETa was greater than 
WBET, and the yearly biases were within 8%. The number of comparable 
HUC8s (n) varied due to the filtering applied for each water year as 
presented in Table 4. 

HUC8 WBET analysis by hydro-climatic regions indicates varying 
performances of SSEBop among the six regions. SSEBop overestimated 

Fig. 7. Temporal comparison of monthly SSEBop ETa, FLUXNET ETa, and NDVI (right axis) for selected FLUXNET sites (US-MMS – deciduous broadleaf forest in 
Indiana; US-Ne3 – cropland in Nebraska, US-Twt – cropland in California, and US-Whs –shrubland in Arizona). 

Fig. 8. Comparison of water-year 2009–2018 mean annual ETa between SSE-
Bop and Water Balance (WBET) across HUC8s in the CONUS. The gray line is 
the 1:1 and the solid dark line is the best fit. The water year for 2009(2018) 
refers to October 2008(2017) - September 2009(2018) time periods. 

Table 4 
Summary of HUC8 ETa comparison between SSEBop and Water Balance (WBET) 
from the water years 2009 to 2018 using R2, bias, and RMSE.  

Water 
year 

SSEBop ETa 
mm/yr 

WBET 
mm/yr 

n* R2 Bias 
mm/yr 
(%) 

RMSE 
mm/yr 
(%) 

2009 688 676 1104 0.86 12 (2) 125 (19) 
2010 671 680 1073 0.83 − 10 

(− 1) 
136 (20) 

2011 618 625 800 0.81 − 7 (− 1) 136 (22) 
2012 683 666 877 0.89 17 (3) 129 (19) 
2013 691 667 1014 0.90 23 (3) 125 (19) 
2014 717 689 93 0.89 28 (4) 127 (18) 
2015 774 716 896 0.87 58 (8) 149 (21) 
2016 795 763 1077 0.86 32 (4) 148 (19) 
2017 750 717 918 0.83 33 (5) 161 (22) 
2018 787 764 850 0.88 23 (3) 129 (17)  

* n = number of HUC8s for ETa comparison between SSEBop and WBET. The 
number varies from year to year due to filtering criteria. 
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ETa at four regions and underestimated ETa at two regions (Fig. 9). 
SSEBop tends to overestimate ETa across central and eastern regions of 
the CONUS and underestimate in the western regions, reinforcing the 
finding in the EC evaluation that location could be a more important 
factor to influence the model performance than cover type. On 10-year 
(2009–2018 water-year) average, the largest overestimation and un-
derestimation bias were at Northeast (16%) and the West (− 14%) re-
gions, respectively. The smallest bias was at the Pacific Northwest 
(− 2%) (Fig. 9). 

Comparisons of annual ETa for the 10-year average, each water year, 
and across six different regions show a good agreement between SSEBop 
ETa and WBET. The performance of SSEBop varied with a distinct 
regional difference with overestimation in eastern regions with higher 
ETa values and underestimation in western regions with lower ET rates. 
Generally, eastern regions of the CONUS receive more precipitation and 
the ET rates are primarily driven by the available energy to evaporate 
water from the land surface. In contrast, western regions are drier with 
less precipitation and thus ET rates are driven by the availability of 
water at the land surface. As the SSEBop model does not include pre-
cipitation or soil moisture information for ETa estimation, the likely 
reasons for the ETa overestimation in wet regions and underestimation 
in dry regions are due to the biases in the estimation of model drivers 
such as land surface temperature (Ts) and ETr and the model parameters 
such as γs and Tc. Particularly, a uniform bias correction for ETr at 0.85 
could be responsible for regional variability where a non-uniform bias 
correction could be more appropriate. Similarly, an under-estimated γs 

parameter could lead to a positive bias while an underestimated Tc 
could lead to a negative ETa bias. 

A few HUC8s in the West region had the largest disagreement up to 
400 mm/yr (red points in Fig. 8) between SSEBop ETa and WBET. These 
HUC8s are clustered in northern California and had a runoff value of 
zero (0), thus estimating higher WBET. Some of the HUC8s had Q/P 
values close to the 0.40 threshold, indicating a higher potential for 
regional groundwater flow, which may have added bias. Limiting the Q/ 
P threshold to 0.30 lowered the mean bias to 3% (17 mm/yr) on 10-year 
average ETa; however, this substantially reduced the number of com-
parable HUC8s (630 HUC8s). Thus, due to the lower number of com-
parable HUC8s, the results were reported for the Q/P ratio greater than 
0.40 for covering the majority of HUC8s across different hydro-climatic 
regions of the CONUS. Both WBET and energy balance (SSEBop) ap-
proaches have advantages and limitations for ETa estimation at HUC8 
scale. Besides the biases from both approaches, the 10-year average ETa 
estimations from SSEBop were within 7% for the CONUS, ±8% for each 
water year, and ± 16% for six regions in comparison to the WBET. These 
biases are similar to the range of errors reported in the previous studies 
(Velpuri et al., 2013; Senay et al., 2016) and within the expected bias 
range of 10–20% from remote sensing-based energy balance algorithms 
(Allen et al., 2011). 

3.4. Anomaly mapping and environmental application 

Annual ETa anomalies were calculated as the percent of deviation for 
each calendar year in relation to the median year (2010–2019) total 
(Fig. 10). Due to the relatively small number of years (10 years), the 
median ETa was used from the 2010–2019 annual total ETa (Fig. 4). The 
calculation of ETa anomalies using relative differences from an average 

Fig. 9. Comparison of water-year 2009–2018 mean annual ETa between SSEBop and Water Balance (WBET) across HUC8s at six different regions of the conter-
minous United States. 
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year is useful for applications in drought monitoring purposes. Anom-
alies are also useful for field-level land use information, such as cropping 
practices, and for mapping soil and surface water consumption changes 
on the landscape, such as from wildfires and other natural disasters. 

General spatial patterns of ETa anomalies show relatively drier years 
from 2010 through 2013 with negative deviation in relation to the 
median year ETa shown in Fig. 4. Known drought years of 2011 and 
2012 are prominently shown in parts of the High Plains in the middle of 
CONUS (e.g., Texas and Oklahoma). Although such estimates of low ET 
may signal prolonged water-limited stress conditions on the broader 
landscape, the degrees of realized effects likely vary with existing 
drought contingency plans and intervention measures. Reliability of 
anomalous ET estimates depends on the consistency of clear image data 
quality and availability from year to year. Due to cloud cover (or snow/ 
ice) problems, some years may have fewer Landsat images, which 
required interpolation over longer gaps. This is a potential diagnostic 
concern for much of the CONUS except in the Southwest and is recog-
nized as an area that would benefit from a separate focus on uncertainty 

analysis and detailed gap assessments across large expanses of time and 
space. Furthermore, with the cloud-based ET production techniques as 
presented here, opportunities exist for more tailored applications and 
deeper studies of drought monitoring dynamics using SSEBop from 
Landsat as a cross-cutting data resource alongside well-known mapping 
products such as the U.S. Drought Monitor (https://droughtmonitor.unl. 
edu/Maps/MapArchive.aspx). While illustrations of ET applications are 
vast, we attempted to center on model product examples with ranges of 
scope and scale as seen in Figs. 10 and 11. There is tremendous value in 
national-scale anomaly mapping with Landsat thermal-based ETa in-
formation for supporting numerous regional- and field-scale applica-
tions that rely on assessment of soil moisture and vegetation conditions 
from remote observations. 

A close-up of ETa and its anomalies around Chico, California, in 
Fig. 11 shows field-scale details on the effect of alternating irrigation 
(2018 and 2019) and fire impact in 2019. Fallow fields in 2018 and 2019 
(Fig. 11b and c) clearly show negative anomalies capped at − 50% de-
viation, and similarly the effect of the 2018 Camp Fire near Paradise 

Fig. 10. SSEBop annual (January–December) ETa anomalies from 2010 to 2019 expressed as the percent deviation of each year from the median year. Data were 
aggregated to 250-m resolution for display. 
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(Fig. 11c) is shown as negative anomaly in the 2019 annual ETa 
estimate. 

As Fig. 11 shows, Landsat-based ETa is an important dataset for field- 
scale analysis due to its superior spatial resolution compared to coarser 
satellites. Particularly, the role of Landsat for field scale water use 
mapping cannot be matched by existing coarser satellites. But the 
infrequent observations could create a challenge to develop a drought 
anomaly product in cloud-prone regions. Despite data frequency con-
cerns, this study demonstrates the capability of Landsat in capturing 
year to year variability for large area assessment of ETa whether it is for 
crop water use, drought monitoring, or fire impact mapping. On the 
other hand, continued research in the integration of Landsat data with 
MODIS is warranted to improve temporal resolution and with Sentinel-2 
to improve both spatial and temporal resolutions as demonstrated by 
Singh et al. (2020). 

3.5. Sources of error 

Results presented in this study are subject to uncertainty and bias 
attributable to multiple factors such as the spatiotemporal variability of 
Landsat image counts and the distribution of cloud-free images at annual 
and sub-annual scales, accuracy of the reference ET data, and model 
parameter accuracies from automated model implementation tech-
niques. These sources are important to recognize when considering ap-
plications of ET at any scale. Furthermore, separate studies with due 
focus and precise analysis of how these errors are affected in different 
regions would be an important topic for the SSEBop model into the 
future. 

An important and widely recognized challenge with remote sensing 
data is the varying availability of cloud-free imagery. In this study, we 

focused on large-scale production and presentation of mapping ETa at 
the annual time step over CONUS. A summary of annual cloud-free in-
formation from Landsat (Fig. 5) shows the number of images ranged 
from less than 6 in the mountainous, clouded regions to more than 60 
images per year in the arid southwest during the 10-year study. Also 
related, model estimates may at times result in ET artifacts because of 
errors in the cloud masking algorithm. These are both recognized areas 
of potential future cloud-impacted evaluation that could contribute to a 
broader, more detailed uncertainty assessment of seasonal image 
availability for time integration across large area domains. 

The use of a constant 0.85 bias correction factor for the GridMET ETr 
has a potential to introduce an unknown range of error in different parts 
of the country as indicated by Blankenau et al. (2020). A spatiotempo-
rally dynamic correction factor would be more appropriate and is ex-
pected to improve the results. Furthermore, the study used a climatology 
ETr that could introduce random errors on a given day, but its effect is 
minimized at monthly and annual time scales. However, bias errors will 
persist at longer time scales, with a larger effect during extreme dry/ 
clear-sky or wet/cloudy years that are different from the climatology. 

The Ts is generated by using NDVI thresholds for emissivity com-
ponents as implemented by Singh et al. (2014) and Senay et al. (2016). 
Exploratory comparison (data not presented) of our Ts against the 
Landsat Collection 2 (C2) Ts from USGS Earth Resources Observation 
and Science (https://www.usgs.gov/core-science-systems/nli/landsa 
t/landsat-collection-2-level-2-science-products) has shown that the C2 
Ts seems to show wider dynamic range than the C1-based Ts used in this 
study in parts of central and eastern CONUS and more comparable in the 
western CONUS. Future application of the SSEBop method will use the 
C2 Ts which is expected to improve its performance. The Landsat C2 was 
not available on GEE for timely use of the dataset in this study. 

Fig. 11. Illustration of Landsat-resolution median annual ETa (a) and percent of difference ETa anomaly for a location near Chico, California. Negative anomaly ETa 
results indicate fallow/idle rice fields in the southwest (b, c) and fire burn scar from the historic 2018 Camp Fire near Paradise, California (c). 
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In addition to model inputs, the two model parameters γs and Tc tend 
to create directional biases, but not random error for a given location. 
The optimization algorithm for these model parameters is sensitive to 
their respective calibration procedures and underlying assumptions. For 
example, the Tc depends on the establishment of the cold/wet pixel 
based on using a high NDVI (≥ 0.7) threshold for every 5-km grid cell. 
This could introduce an overestimation bias if most of the calibration 
pixels are barely meeting the minimum threshold, because slightly 
stressed vegetation pixels could be assumed to experience a maximum 
ET. Image inspections have shown up to 4 degrees (K) difference in Ts 
values between NDVI = 0.7 and NDVI = 0.9, which could introduce a 
large bias, up to 20% of maximum ET on a summer condition. The 
absence of such high NDVI pixels in the cluster of calibration points is 
usually an issue in less vegetated arid and semi-arid regions and outside 
of typical growing seasons. Similarly, the accuracy of the γs (1/dT) 
parameter depends on the correctness of the gray-sky radiation and the 
calibration process in determining the rah parameter. A higher (over-
estimated) dT will lead to an ETa overestimation and vice versa, but its 
effect is more pronounced in low ET pixels, assuming the Tc is correctly 
set. Senay et al. (2011) reported that a 10% error in dT will result in a 
30% relative error for pixels with ETf = 0.25, but only introduce a 3% 
relative error for pixels with ETf = 0.75. From the HUC-based water 
balance study, we have noticed a general underestimation in the arid 
West/Pacific Northwest and overestimation in the Southeast, which 
could be related to a lower dT that may underestimate and dispropor-
tionally affect the low ET areas in the arid regions and using a 0.7 NDVI c 
factor threshold that could lead to overestimation in the vegetated 
Southeast. Future work could include a sensitivity analysis to improve 
the optimization of these two parameters in diverse agro-climatic 
regions. 

4. Conclusions 

The main objectives of this study were to implement the SSEBop 
model in the GEE cloud computing environment to model wall-to-wall 
ETa for the CONUS, describe model parameter improvements, and 
evaluate the results using independent data sources along with pre-
senting an application use case with ETa anomalies. 

The study has demonstrated the capability and strength of the GEE 
platform to process and model CONUS-wide SSEBop ETa at the Landsat 
scale, overcoming earlier challenges and limitations on large data stor-
age and extended computational time, processing ~15,000 images for 
CONUS within one week. The increased computational efficiency 
allowed for iterative model refinement and reparameterization and 
better time-integrated per-pixel interpolation methods across complete 
Landsat collections, improving the overall model performance. 
Furthermore, use of GEE has led to greater data inquiry with faster in-
sights and generated responsive solutions with dedicated APIs leading to 
ongoing external collaboration frameworks essential to the future of 
science applications at increasing scales. 

Evaluation of ETa estimates against EC tower and Water Balance ETa 
techniques demonstrated that model accuracy appears dependent on 
specific locations and regions rather than cover type with a general 
underestimation in low ETa regions (<~400 mm/yr) and over-
estimation in high ETa regions (> ~ 800 mm/yr) but with an average 
annual bias of 7% compared with WBET. However, EC tower evaluation 
showed that SSEBop, on average, performed better over croplands than 
over forest and grasslands areas. There was large variability in perfor-
mance within each cover type indicating the importance of improving 
data inputs and parameters over local conditions. Future modeling ef-
forts could address these challenges for more consistent and accurate 
ETa spatial representation. 

Landsat-based ETa results from this study were comparable to 
MODIS-based results in terms of accuracy metrics such as R2 and RMSE, 
but Landsat provides a superior fine detailed information at the field 
scale that was not possible to achieve at the MODIS scale. It would not be 

surprising to obtain a weaker performance with Landsat when using 
seasonal and yearly totals due to uncertainty in interpolation to fill 
missing Landsat pixels due to cloud cover. The encouraging performance 
of temporally aggregated ETa from Landsat for drought and fire impacts 
is indicative of the possibility to produce fine resolution time series 
mapping, monitoring, and assessment products for land and water re-
sources managers. 

Cloud computing of the Landsat image archive combined with other 
satellite, climate, and weather data, creates new opportunities for 
assessing ET model behavior and uncertainty, and ultimately providing 
the ability for more robust operational monitoring and understanding of 
water use at the field level. These capabilities to rapidly process large 
volumes of remote sensing datasets can provide answers to more chal-
lenging hydrologic modeling questions than ever before. 

The power of cloud computing could be extended to merge Landsat 
data with multiple satellite sources that can improve the temporal fre-
quency with comparable number of quality images over multiple years 
to create consistent and reliable seasonal ETa for field-scale assessment 
and trend analysis over large areas such as CONUS and beyond. 
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