This website provides access to drought indices that are used by the Montana Governor’s Drought and Water Supply Advisory Committee (Monitoring Sub-Committee). All datasets are calculated daily and can be aggregated by watershed and county boundaries. Much of the underlying data in this dashboard is from the gridMET dataset, for more information see http://doi.org/10.1002/joc.3413. In this document we focus on:
This work is supported by a National Oceanic and Atmospheric Administration’s (NOAA) National Integrated Drought Information System (NIDIS) Drought Early Warning System (DEWS). More information on NIDIS and the DEWS program can be found at https://www.drought.gov/drought/what-nidis.
The SPI is a common metric which quantifies precipitation anomalies at various timescales. SPI is often used to estimate a range of hydrological processes that respond to precipitation from short to long periods of time. For example, SPI is related to soil moisture anomalies when calculated over short time scales (days to weeks) but is more related to groundwater and reservoir storage over longer timescales (months to years). The values of SPI can be interpreted as a number of standard deviations away from the average cumulative precipitation depth for a given time period. The SPI has unique statistical qualities in that it is directly related to precipitation probability and it can be used to represent both dry (negative values; represented here with warmer colors) and wet (positive values; represented here with cooler colors) conditions. Data can be found at: https://data.climate.umt.edu/drought-indicators/spi/ SPI Maps with a USDM color scheme can be found at: https://data.climate.umt.edu/drought-indicators/figures/usdm-color-scheme/
The SPI quantifies precipitation as a standardized departure from a probability distribution function that models the raw precipitation data. The raw precipitation data are typically fitted to a gamma or a Pearson Type III distribution, and then transformed to a normal distribution (Keyantash and NCAR staff, 2018). Normalization of data is important because precipitation data is heavily right hand skewed. This is because smaller precipitation events are much more probable than large events. In our calculations we use a gamma distribution.
Key Strengths:
Key Weaknesses:
There has been extensive validation of the SPI across the globe. In general, results have shown that the SPI provides similar results to different standardized precipitation indices.
https://www.sciencedirect.com/science/article/pii/S0168192318303708
https://link.springer.com/article/10.1007/s10584-005-5358-9
https://www.hydrol-earth-syst-sci.net/17/2359/2013/hess-17-2359-2013.html
https://journals.ametsoc.org/doi/abs/10.1175/JHM-D-13-0190.1
https://journals.ametsoc.org/doi/abs/10.1175/JAMC-D-10-05015.1
Validation in progress
UMRB specific recommendations will be appended to this document as validation is completed
Much of the background information regarding this metric was contributed by NCAR/UCAR Climate Data Guide
SPEI takes into account both precipitation and potential evapotranspiration to describe the wetness or dryness of a time period. SPEI can be calculated at various timescales to represent different drought timescales and its impacts on hydrological conditions ranging from short to long timescales. SPEI incorporates the important effect of atmospheric demand on drought. Data can be found at: https://data.climate.umt.edu/drought-indicators/spei/ SPEI Maps with a USDM color scheme can be found at: https://data.climate.umt.edu/drought-indicators/figures/usdm-color-scheme/
SPEI is an extension of the SPI in the sense that it uses a normalized probability distribution approximation of raw values to calculate deviation from normals. Similar to SPI, SPEI values are reported in units of standard deviation or z-score (Vicente-Serrano and NCAR staff, 2015). Although, the raw values for this metric are P-PET.
Key Strengths:
Key Weaknesses:
The SPEI has been used in many studies to understand the effects of drought on hydrologic resource availability, including reservoir, stream discharge and groundwater. In general, SPEI calculated at longer timescales (>12 months) has shown greater correlation with water levels in lakes and reservoirs (McEvoy et al., 2012).
Validation in progress
UMRB specific recommendations will be appended to this document as validation is completed
Much of the background information regarding this metric was adapted from the NCAR/UCAR Climate Data Guide (here)
EDDI calculates the rank of accumulated PET for a given region. EDDI does not standardize data based off of theoretical (parameterized) probability distributions (such as SPI and SPEI). Instead, EDDI uses a non-parametric approach to compute empirical probabilities using inverse normal approximation. This method calculates EDDI by ranking the data from smallest to largest and accounting for the number of observations. Therefore, maximum and minimum values of EDDI are constrained by the number of years on record (which determines the number of observations). Practically, this causes EDDI to show the relative ranking of year, with respect to the period of record. Data can be found at: https://data.climate.umt.edu/drought-indicators/eddi/
Produced by the Montana Climate Office
Montana Forest & Conservation Experiment Station
University of Montana
32 Campus Drive
Missoula, MT 59812
Phone: (406) 243-6793
state.climatologist@umontana.edu